TEST di autovalutazione

1 La valutazione di una Espressione Booleana è rappresentata:
A) Dalle Tavole di verità degli operatori logici presenti nell'Espressione
B) Dalla Tavola di verità della funzione calcolata dall'Espressione
C) Dal valore di verità assunto dalle variabili dell'Espressione
D) Dal numero di variabili dell'Espressione che assumono valore "vero"

 

2 Due Espressioni Booleane sono equivalenti quando:
A) Hanno la stessa lunghezza
B) Hanno lo stesso numero di operatori AND, OR e NOT
C) Le loro valutazioni forniscono Tavole di verità uguali
D) Hanno le stesse variabili

 

3 Le proprietà degli operatori logici rappresentate da identità tra Espressioni Booleane consentono di:
A) Sostituire l'AND con l'OR e il valore 0 con 1, e viceversa
B) Modificare il valore di verità degli operatori logici
C) Determinare le Tavole di verità degli operatori logici
D) Trasformare una Espressione Booleana in un'altra equivalente

 

4 La forma canonica Somma di Prodotti e data da:
A) Un AND di OR
B) Un OR di AND tale che ogni AND contiene tutte le variabile in forma normale o complementata
C) Un OR di AND
D) Un AND di OR tale che ogni OR contiene tutte le variabile in forma normale o complementata

 

5 Un mintermine è:
A) Una funzione la cui tavola di verità contiene un solo valore 1, data dall'AND di tutte le variabili in forma normale o complementata
B) Una funzione di una sola variabile binaria
C) Una funzione la cui tavola di verità contiene un solo valore 0, data dall'OR di tutte le variabili in forma normale o complementata
D) La negazione di un AND di variabili Booleane

 

6 La forma canonica Prodotto di Somme e data da:
A) Un OR di AND
B) Un AND di OR tale che ogni OR contiene tutte le variabile in forma normale o complementata
C) Un AND di OR
D) Un OR di AND tale che ogni AND contiene tutte le variabile in forma normale o complementata

 

7 Un Maxtermine è:
A) Una funzione la cui tavola di verità contiene un solo valore 0, data dall'OR di tutte le variabili in forma normale o complementata
B) Una funzione che assume tutti i valori del Dominio dell'Algebra di Boole
C) Una funzione la cui tavola di verità contiene un solo valore 1, data dall'AND di tutte le variabili in forma normale o complementata
D) La negazione di un OR di variabili Booleane

 

8 La proprietà dell'insieme di opertatori AND, OR, NOT di essere funzionalmente completo significa che:
A) Ogni Espressione Booleana che contiene questi operatori può essere valuta
B) Tutti questi operatori possono essere valutati mediante Tavole di verità
C) Le tavole di verità di questi operatori contengono almeno un valore diverso da 0
D) Data una qualunque funzione Booleana si può determinare una Espressione Booleana in cui figurano solo gli operatori AND, OR, NOT, e la cui valutazione è uguale alla funzione data

 

9

La forma canonica Somma di Prodotti della funzione Boleanna rappresentata dalla Tavola di verità in figura è data:
A)

Dall'Espressione Booleana in figura
B)

Dall'Espressione Booleana in figura
C)

Dall'Espressione Booleana in figura
D)

Dall'Espressione Booleana in figura

 

10


La forma canonica Somma di Prodotti della funzione Boleanna rappresentata dalla Tavola di verità in figura è data:
A)

Dall'Espressione Booleana in figura
B)

Dall'Espressione Booleana in figura
C)

Dall'Espressione Booleana in figura
D)

Dall'Espressione Booleana in figura